

CleanControlling **

Procedure using Particel-Traps to determine environmental cleanliness

Instruction

- 3 Design of Particle-Traps
- 4 Placement of Particle-Traps
- 5 Placing and activating Particle-Traps
- 6 Duration of activation
- 7 Deactivating and analyzing Particle-Traps
- 8 Calculation of the sedimentation count or Illig-Value
- 9 Presentation of the Particle-Traps (ILLIG-VALUE) according the layout
- 10 CCC-Code Component Cleanliness Code according VDA 19.1 / ISO 16232

Design of a Particle-Trap

Cover to close the Particel-Trap after deactivation

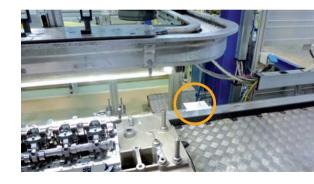
Protection film for activation

Placement of Particle-Traps

Horizontal mounting

- At particle relevant places with reference to the parts
- In different heights for example 30cm, 1m, 2m
- According to the layout of the area

Placing and activating Particle-Traps



Comment to the placement of Particle-Traps

- Cleaning of the defined area (using a wet fabric; don't generate particle-spreading)
- Labeling the card (don't forget date and time of activation)
- Installation of the Particle-Trap. If necessary use mounting angle or stand!
- Store cover in a clean plastic bag until deactivation
- Remove protection film
- Take a picture of the Particle-Trap in the activated status
- Take another picture of the Particle-Trap with the environment

Duration of activation

- Examination time of the Particle-Trap is 7-10 days
- Shorter examination times are possible and useful in some cases (Please keep in mind the blank-value-criterion)
- It is recommended to check all Particle-Traps after 3 days of activation
- Documentation of particularities during examination time
 (Production figures, modifications, changes in process)
- If the analyzed surface of the Particle-Trap gets grey there is a risk that it won't be able to analyze due to occupancy
- Particle-Traps with finger prints or damages should be exchanged with new ones

Deactivating and analyzing Particle-Traps

Comment to deactivation of Particle-Traps

- Close Particle-Trap with the cover
- Document date and time of deactivation on the card
- ♦ Make sure that the cover cannot remove unintentionally

Comment to Analysis of Particle-Traps

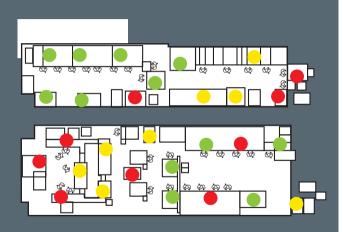
- Microscopic analysis
- Calculation of the Illig-Value and documentation of the biggest particles and the particle distribution
- Assessment of the unexpected results and definition of measures
- Determine confirmation analysis

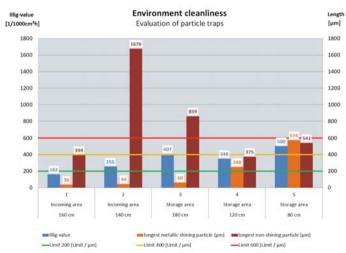
Calculation of the sedimentation count or ILLIG-Value for each Particle-Trap according VDA 19 Part 2

Particle size [μm]	Weighting factor
5 ≤ x < 15	0
15 ≤ x < 25	0
25 ≤ x < 50	0
50 ≤ x < 100	1
100 ≤ x < 150	4
150 ≤ x < 200	9
200 ≤ x < 400	16
400 ≤ x < 600	64
600 ≤ x < 1000	144
1000 ≤ x	400

Number of particles for each trap without fibers

Calculation to a referece area of 1000cm²


Calculation to a measuring time of 1 hour


Weighting for each size class

Sedimentation count (Illig-Value)

OF THE

Presentation of the Particle-Traps (ILLIG-VALUE) according the layout

Size Class (Größenklasse)	Particle size [µm]
В	5 ≤ x < 15
C	15 ≤ x < 25
D	25 ≤ x < 50
E	50 ≤ x < 100
F	100 ≤ x < 150
G	150 ≤ x < 200
Н	200 ≤ x < 400
I I	400 ≤ x < 600
J	600 ≤ x < 1000
K	1000 ≤ x < 1500
L	1500 ≤ x < 2000
M	2000 ≤ x < 3000
N	3000 ≤ x

Examples: CCC = A(D15/E12/F12/G12/H-I4/J0)

CCC = A(E12/F12/GI9/G12/I0/K00) CCC = N(E9000/F-G5000/H-I1500/J50/K10)

Contamination Level (Konzentrationsklasse)	Number of particles (per 100 cm³ or 1000 cm²)
00	0
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	130
8	250
9	500
10	1000
11	2000
12	4000
13	8000
14	16000
15	32000
16	64000
17	130000
18	250000
19	500000
20	1000000

Example of CCC-Code

Contamination Level
Size Class

A = (Area) in reference to a component surface of 1000 cm²

V = (Volume) in reference to the wetted volume of 100 cm³

N = in reference to the one component -> Number of particles is directly expressed

CCC = Component Cleanliness Code

CleanControlling GmbH

Gehrenstrasse 11a D-78576 Emmingen-Liptingen

Tel. +49 74 65 / 92 96 78-0 Fax +49 74 65 / 92 96 78-10

info@cleancontrolling.com www.cleancontrolling.com

